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Sensing flow gradients is necessary for
learning autonomousunderwater navigation

Yusheng Jiao1,4, Haotian Hang 1,4, Josh Merel2 & Eva Kanso 1,3

Aquatic animals are much better at underwater navigation than robotic vehi-
cles. Robots face major challenges in deep water because of their limited
access to global positioning signals and flow maps. These limitations, and the
changing nature of water currents, support the use of reinforcement learning
approaches, where the navigator learns through trial-and-error interactions
with the flow environment. But is it feasible to learn underwater navigation in
the agent’s Umwelt, without any land references? Here, we tasked an artificial
swimmer with learning to reach a specific destination in unsteady flows by
relying solely on egocentric observations, collected through on-board flow
sensors in the agent’s body frame, with no reference to a geocentric inertial
frame. We found that while sensing local flow velocities is sufficient for geo-
centric navigation, successful egocentric navigation requires additional
information of local flow gradients. Importantly, egocentric navigation stra-
tegies obey rotational symmetry and are more robust in unfamiliar conditions
and flows not experienced during training. Our work expands underwater
robot-centric learning, helps explain why aquatic organisms have arrays of
flow sensors that detect gradients, and provides physics-based guidelines for
transfer learning of learned policies to unfamiliar and diverse flow
environments.

Ocean monitoring is essential for understanding ecosystem
functioning1, marine biodiversity2, and the ocean’s carbon cycle3, par-
ticularly in the face of our rapidly changing climate4,5. To expand the
current capabilities of underwater robots for long-term ocean sur-
veillance and monitoring4,6–8, we need effective control strategies that
enable robotic swimmers to seamlessly navigate through shifting
currents, much like biological swimmers9–11, using only on-board sen-
sors. But is it feasible for robots to learn underwater navigation
autonomously from an egocentric perspective without any land
references?

Navigating underwater environments presents unique challenges
because of the dynamic nature of flow currents and the absence of
global positioning signals. The naive intuition that to reach a destina-
tion, it suffices to turn towards that destination andmove in a straight

line to reach it, may not beoptimal or even feasible when the navigator
experiences strong flow currents12. Planning trajectories using optimal
control theory such as in Zermelo’s navigation problem requires
detailed prior knowledge of the entire flow field and its time
evolution13–16, information not readily available to an autonomous
underwater navigator. Methods like adaptive control17,18 and model
predictive control19,20 exist formotion planning in partially known flow
fields, but fall short under limited flow information.

Reinforcement learning (RL) approaches—a suite of artificial
intelligence algorithms that solve problems through trial and
error21–31—are particularly suited to learning optimal navigation stra-
tegies by interacting directly with the flow environment. RL is already
driving the next innovations in aerial and underwater locomotion32–37,
navigation38,39, and trajectory tracking8,40,41. In RL, the agent, in either a
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simulated38,39,42 or physical8,33,43–45 flow environment, acts according to
a control policy. The policy processes inputs, observations of the
agent’s environment, to generate an action. This observation-to-action
mapping is continuously refined through repeated interactions with
the surrounding environment, guided by a predefined reward function
to optimize the agent’s performance21.

But what environmental cues should the agent detect, or
observe, to learn efficient underwater navigation? For inspiration and
to explore potential solutions, it is reasonable to turn to aquatic
organisms. Fish, for example, are thought to orient themselves using
both geocentric and egocentric visual maps46, similar in their neural
basis to those used by mammals and birds for spatial navigation47.
Fish also possess an elaborate lateral line system that allows them to
determine the direction and rate of water movement48,49. This flow
sensing ability is important for evading predators50, homing51, and
rheotaxis11,52,53. However, despite extensive laboratory and field stu-
dies, the sensory cues available and employed by fish for navigation
remain an open problem53,54. This knowledge gap motivates us to
explore the minimal sensory cues necessary for autonomous
underwater navigation in fish and fish-like robots at themeter scale55.
At this scale, the flow environment is characterized by long-lived
coherent vortex structures56–58, distinct from the uniform turbulence
experienced at smaller scales59,60.

We consider underwater swimmers characterized by two unique
features: (1) the swimmer only senses instantaneous and local flow
information, with no immediate, past, or future knowledge of spatial
flow variations beyond its sensing range, and (2) the swimmer senses
the flow in an egocentric frame, with no knowledge of a global flow
direction or inertial frame of reference. Egocentrism here is more
nuanced compared to its interpretation in studying how animals
build visual maps of the physical space46: it implies that the agent has
no awareness of an external frame of reference, and no information of
its own position and orientation or the flow direction in such frame.
The agent operates independently of a geocentric land-based coordi-
nate system. This underwater navigator is different from existing stu-
dies where the agent knows the full velocity field12,42,61,62, or where the
agent relies on inertial information, such as knowledge of the direction
of gravity32,60, the agent’s location and orientation in a geocentric
frame of reference8,38,42,61,62, or the global direction of an oncom-
ing flow39.

The incorporationof these two features—egocentrismand locality
of flow sensing—is quintessential for establishing a paradigm of
underwater robotic learning grounded in the robot’s own sensory
world, similar to the “Umwelt" concept in animal behavior63. This
approachwould allow robots to perceive, interactwith, and learn from
their environment based on their unique sensory inputs. This, in turn,
would lead to more adaptive and autonomous behaviors and help
overcome current limitations in learning that rely on geocentric
observations8,38. Geocentric policies are not invariant to rotations and
translations of the flow field and not suitable for autonomous
deployment in the open ocean without continuous support from and
communication with a terrestrial control center8.

In this study, we first investigate if an artificial agent interacting
with a simulated flow environment can learn autonomously using
egocentricflowobservationswithout the extra support of a geocentric
inertial reference. We find that, while sensing local flow speeds is suf-
ficient for geocentric navigation, successful egocentric navigation
requires additional information about local flow gradients. Then, we
compare the adaptability of geocentric and egocentric navigators to
unfamiliar flow environments. We find that, with the additional
observation of local flow gradients, egocentric navigators are as suc-
cessful in familiar environments and could be more robust under
unfamiliar conditions. To elucidate the sensory cues the agent uses for
decision-making, we map the agent’s trajectories from the physical
space to the space of flow observations, and we employ tools from

dynamical systems theory to explain the behavior of the trained RL
policy in comparison to heuristic policies.

Our work paves the way towards truly autonomous underwater
learning from a robot-centric perspective64, provides fresh insights
intowhy aquatic animals possess a network offlow sensors (e.g., lateral
line system of fish49,65 and array of whiskers of the harbor seal9) to
detect local flow gradients, informs the design of optimal sensing and
control strategies for future underwater robots53,66, and offers a gate-
way for transfer learning in new flow environments67. It also opens new
avenues for future exploration of hybrid strategies that integrate
egocentric and geocentric representations of the environment68–71.

Results
Consider the problem of an artificial swimmer tasked with navigating
to a destination located across an unsteady wake (Fig. 1A). The wake
consists of a trail of alternating-sign vortices generatedby a freestream
flowof speedUpast a fixed cylinder of diameterD, whichwe simulated
numerically using a computational fluid dynamics (CFD) solver
(Methods, Supplementary Fig. 1,72–74). The swimmer,modeled as a self-
propelled agent, is constrained to move at a constant speed V = 0.8U
weaker than the freestream speed U.

This problem is challenging because when positioned outside the
wake, the swimmer cannot overcome the flow; it drifts downstream. In
Zermelo’s classic optimization problem, a swimmer in an over-
powering uniform stream with control only over its heading direction
can, at best, optimize its motion either tominimize the time it takes to
travel a given distance across the stream or to minimize its down-
streamdrift distance (Methods, SupplementaryFig. 2). Tonavigate to a
target across anunsteadywake, the swimmermust follow three stages:
enter the wake, slalom between vortices to exploit the weaker flows in
the wake to swim upstream, and exit upstream of the target to ensure
reaching it despite the stronger downstream current. These three
stages—entering, zigzagging inside, and exiting the wake—universally
characterize navigation across an unsteady wake; they arise in trajec-
tories based on time-optimal control given full knowledge of the
spatiotemporal evolution of the flow field, when the swimmer has
direct control over its heading direction38 and when it has control only
over the rotational rate at which it changes its heading direction
(Fig. 1A). Slaloming inside thewakewas reported in livefishnegotiating
unsteady wakes75 and is thought to endow fish with energetic benefits
when swimming alone75 and in groups76,77; slaloming also emerges
robustly in inanimate swimmers interacting with unsteady flows78–81.

Because full knowledge of the spatiotemporal evolution of the
flow field is often unavailable for robotic or biological underwater
navigators, it was demonstrated in ref. 38 that an optimal strategy for
entering, zigzagging in, and exiting the wake can be learned using RL
with only local and instantaneous observations of the flow velocity and
relative position of the target—the agent has nomemory of past states
and makes no prediction of future states. The problem of navigating
across unsteady wakes in strong currents is thus controllable and
solvable with either full or partial observations of the flow field, as long
as observations are provided in an inertial frame of reference. But is
learning feasible in the agent’s Umwelt, from an egocentric
perspective?

Distinguishing between egocentric and geocentric observations
To illustrate the difference between egocentric and geocentric sen-
sing, consider the geocentric learning in ref. 38where, to reach a target
located across the unsteady wake, the policy relied on geocentric
observations taken in an inertial frame of reference (ex, ey). In this
inertial frame, the target is located at x⋆ ≡ (x⋆, y⋆). Geocentric obser-
vations consisted of (i) the local flowvelocityu ≡ (u, v)measured at the
location x ≡ (x, y) of the agent and (ii) the relative position
Δx = x⋆ − x ≡ (Δx, Δy) of the target to the agent (Fig. 1B). Practically, to
obtain these observations, the swimmer must first measure these

Article https://doi.org/10.1038/s41467-025-58125-6

Nature Communications |         (2025) 16:3044 2

www.nature.com/naturecommunications


quantities using on-board sensors in its own body-frame, say, (t, n)
chosen to coincide with the swimmer’s heading t and transverse n
directions (Fig. 1C). Basically, the agent must first observe, at its loca-
tion, the longitudinal and transverse components (ub, vb) ≡ (u ⋅ t, u ⋅ n)
of the fluid velocity u and the relative position
(Δxb, Δyb) ≡ (Δx ⋅ t, Δx ⋅ n) of the target (Fig. 1C). Then, to transform
thesemeasurements into an inertial frame, the agent needs to know its
own orientation θ, i.e., heading direction t � ðcosθ, sinθÞ, relative to
the inertial frame (ex, ey), which usually means the assistance of a
satellite, compass, or inertialmeasurement unit (Table 1). Additionally,
to properly align the inertial frame relative to the freestream direction
as done in ref. 38, the swimmer must know the freestream direction
in advance, which is typically unavailable in underwater
environments11,49,53,82.

In an equivalent egocentric set-up, the agent collects sensory
observations directly in its body frame (t, n), with no prior knowledge
of freestream direction and no dependence on terrestrial coordinates
or inertial frame. Basically, the agent observes, at its location, the

longitudinal and transverse flow components (ub, vb) and the relative
position (Δxb,Δyb) of the target (Fig. 1C). It hasno knowledgeof its own
orientation θ, which eliminates potential time delays and computa-
tions inherent to assessing inertial signals8,83. Thus, if amenable to
learning in underwater environments, egocentric observations would
at once be less demanding in terms of sensory requirements and offer
greater flexibility in underwater environments where obtaining and
communicating external sensory data to the agent is unfeasible.

We formulated the learning problem such that, given a set of
observations o, the policy π(a∣o) outputs an action a aimed to guide
the artificial agent to a target location across the wake (Fig. 1D,
Methods). To reflect practical limitations on motion steering in bio-
logical and robotic systems39,84,85, we considered the agent’s action a to
control the rate of change _θ of its heading direction; the agent has no
direct control over its heading angle θ. The policy πð _θjoÞ is learned by
maximizing, through repeated interactions with the environment, a
cumulative reward composed of a sparse reward given once the
swimmer reaches the target and a dense reward given at every

Vorticity

Target

A

Time-optimal 
Trajectory

Fig. 1 | Autonomous underwater navigation in unsteady flows. A Unsteady flow
generated by a uniform freestreamflowUpast a cylinderofdiameterD atRe = 400.
A swimmermoving at constant speed V =0.8Umust navigate the wake to reach the
target (black star). Motion planning using time-optimal control (black trajectory)

requires prior knowledge of the entire flow field and its time evolution. Flow and
visual sensory cues in (B) a terrestrial geocentric frame (ex, ey) or (C) a body-fixed
egocentric frame (t, n). D To navigate across unsteady flows, we train, using Deep
RL, a swimmer that senses the ambient flow and target location locally.

Table 1 | Minimal observations for successful learning

Strategy Observations Action Environment Learning Successful Sensor Reqiurement

RL [ref. 38] Δx, Δy, u, v θ CFD yes FTX

RL Geocentric Δx, Δy, u, v Ω CFD, VS no FTX

RL Geocentric Δx, Δy, θ, u, v Ω CFD, VS yes FTX

RL Egocentric Δxb, Δyb, ub, vb Ω CFD, VS no FT

RL Egocentric Δxb, Δyb, ub, vb, n ⋅ ∇ ub, n ⋅ ∇ vb Ω CFD, VS yes FFT

RL Egocentric Δxb, Δyb, ub, vb, t ⋅ ∇ ub, t ⋅ ∇ vb Ω CFD, VS yes FFT

An autonomous swimmer navigating to a target location across an unsteady wake measures both the local flow velocity F and target position T using onboard sensors in its own body-frame and

responds by controlling its rate of change of heading directionΩ= _θ (Fig. 1). To transform themeasurements F and T into geocentric observations, the agentmust know its own orientation relative to
an inertial frame X. Navigation using geocentric observations is achievable without knowledge of flow gradients. For successful egocentric navigation, additional knowledge of flow gradients in
either the tangential or normal direction is required.A comparisonof theminimal sensory requirements for successful learning indicates that egocentric sensing has the advantageof eliminating the
additional time delays and computations inherent to obtaining inertial measurements X at the expense of requiring more flow measurements F to compute local flow gradients.
Flow F: (ub, vb). Target position T: (Δxb, Δyb). Orientation X: θ.
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timestep equal to the negative change in distance to the target. Each
training episode is initiated by randomly positioning the target (x*, y*)
inside a circular region at one side of the wake and the agent (xo, yo)
inside an equally-sized circular region at the opposite side of the wake
and pointing in a random orientation θo (Fig. 1A). Training is initialized
at a random time, i.e., phase, to relative to the wake evolution.

Egocentric learning requires sensing flow gradients
To assess the advantages and limitations of geocentric versus ego-
centric sensing, we asked, in the same fluid environment, which set of
observations facilitates learning the task of navigating across the
unsteady wake with no prior knowledge of the fluid environment.

Starting from the same set of geocentric observations
o = (Δx, Δy, u, v) employed in ref. 38, the swimmer failed to learn the
navigation task. In ref. 38, the swimmer learned successfully because it
had direct control over its heading angle θ. To remedy this, and
because these geocentric observations require implicit knowledge of
the swimmer’s heading angle θ in inertial frame, we allowed the
swimmer to explicitly observe θ, thus augmenting the geocentric
observations to o = (Δx, Δy, θ, u, v) (Table 1). The policy converged in
each of the 17 training sessions we conducted, with some variation in
reward (Fig. 2A, Supplementary Table 1). To highlight the importance
of flow sensing, we trained a flow-blind swimmer that observed only its
ownorientation and relative position to the target (Δx,Δy, θ). The flow-
blind swimmer failed to reach the target (Fig. 2A), performing worse
than the flow-blind swimmer in38 because of the different actions ( _θ
versus θ) taken by the agents.

We next trained the swimmer using the same set of observations
taken in body frame o = (Δxb, Δyb, ub, vb). This flow-limited swimmer
failed to learn (Fig. 2B). When, in addition, we provided the swimmer
with the ability to sense the transverse flow gradient (n ⋅ ∇ ub, n ⋅ ∇ vb),
that is, when considering an augmented set of six egocentric

observations o = (Δxb,Δyb,ub, vb,n ⋅ ∇ ub,n ⋅ ∇ vb), the policy converged
in each of the 16 training sessions, reaching equally high reward as the
geocentric policy (Fig. 2B). Egocentric learning is also possible when
augmenting the local observations to sense the longitudinal flow gra-
dients t ⋅ ∇ ub and t ⋅ ∇ vb in the direction of motion of the agent
(Supplementary Table 1). Sensing flow gradients is thus essential for
autonomous underwater navigation in unsteady environments.

To further substantiate our conclusion that sensingflowgradients
at the swimmer’s scale is necessary for egocentric point-to-point
navigation in coherent flows, we repeated our reinforcement learning
methodology using a different model of the fluid environment.
Namely, we emulated the CFDwake using a well-known inviscid vortex
street (VS) model consisting of two infinite rows of equal-strength,
opposite-sign point vortices79,81,86 (Methods, Supplementary Fig. 1).
Training in this reduced order representation of the flow field, we
arrived at the same result: egocentric learning is not possible without
the additional observations of either longitudinal or transverse flow
gradients.

Training sessions in the VS environment converged faster than in
the CFD environment (Fig. 2A, B), with similar convergence trends
across multiple training sessions: the geocentric policy learned faster
while the egocentric policy was capable of reaching equally high
rewards but with slightly larger training variance and longer con-
vergence time.

The trained agent, whether using geocentric or egocentric
observations and whether trained in CFD or VS wake, followed the
three stereotypical stages of navigation across an unsteady wake in
strong currents: entering the wake, slaloming between vortices to
swim upstream, and exiting the wake upstream of the target (Fig. 3,
SupplementaryMovie 1,38). In Fig. 3, we also plotted the corresponding
trajectories in the flow observation sub-spaces (u, v) for the geocentric
agent and (ub, vb) and (n ⋅ ∇ ub, n ⋅ ∇ vb) for the egocentric agent. To

Fig. 2 | Learningunderwaternavigationusing egocentric observations requires
sensing flow gradients. We trained RL policies with geocentric and egocentric
observations in two flow environments: high-fidelity CFD simulations and a von
Kármán vortex street (VS) model. All policies underwent training of equal length
(2 × 107 timesteps for CFD and 0.5 × 107 timesteps for VS). Learning curves repre-
sent themovingmeanof cumulative rewardsper episode, calculatedover awindow
of 500 episodes.AGeocentric observations: sensing (Δx, Δy, θ) only, the flow-blind
agent failed to learn in six instances of learning. Adding flow sensing abilities (u, v),
the agent learned to navigate in CFDwake in all 17 instances of learning. Training in
VS wake with the same observations succeeded in all four instances, with faster

convergence. B Egocentric observations: sensing (Δxb, Δyb, ub, vb) only, the agent
failed in CFD wake in all 10 instances of learning. Adding local flow gradients
(n ⋅ ∇ ub, n ⋅ ∇ vb) resulted in successful learning in all 16 instances of learning in the
CFDwake and 4 instances of learning in the VSwake. Success rate of (C) geocentric
and (D) egocentric agents for each of the trained policies are evaluated over a
distribution of 1000 randomly generated test conditions (Supplementary Fig. 4).
The larger variance of success rates in CFD compared to VSwakes reflects that CFD
flows are more challenging to navigate. Additional training with entire domain for
initialization and training in CFD wake at Re = 1000 is provided in Supplemen-
tary Fig. 3.
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distinguish the flow sensing cues in each of the three stages of navi-
gation, we highlighted the wake entry, zigzag within, and exit stages.

Upstream motions require the agent’s velocity in the upstream
direction _x � ex = ex � ðu+VtÞ to be positive. This streamwise velocity
can only be positive when the agent is within the wake. For the geo-
centric agent with direct access to u = ex ⋅ u, it suffices that u + V ≥0 be
non-negative for the agent to unambiguously determine that it is
inside the wake. Indeed, as the geocentric agent slalomed between
vortices in the physical space, itsmotion followed periodic oscillations
in the observation space for which u + V ≥0, reflecting that the geo-
centric agent learned the sensory cues u + V ≥0 to stay inside the wake
and move upstream (Fig. 3A, C).

The egocentric agent also learned to enter the wake and change
direction to stay in the wake to satisfy _x � t =ub +V ≥0 (Fig. 3B, D), but
this condition alone does not guarantee upstreammotion nor that the
agent is located within the wake. For example, the agent’s initial
location outside the wake and pointing downstream also satisfies this
condition. Therefore, the agent needs additional observations of flow
gradients to determine when it is inside the wake. To further support
this claim,we repeated the egocentric trainingwith the agent tasked to
swim in the upstream direction, with no specific target position,
starting from initial locations inside the wake. The agent failed to learn
by observing only fluid velocities (ub, vb) without additional observa-
tions of flow gradients such as (n ⋅ ∇ ub, n ⋅ ∇ vb) or (t ⋅ ∇ ub, t ⋅ ∇ vb)
or both.

Next, in Fig. 4, we considered the same 1000 test cases that we
employed in Fig. 2, counted the cases that reached each target, and
interpolated the success rate over a regular grid spanning the target
training domain. The policies trained and tested in the same wake,
whether in CFD or VS, achieved nearly 100% success, consistent with
Fig. 2C, D. In Fig. 4, we plotted, for all 1000 test cases, the probability
density function (p.d.f.) of encountering a set of flow observations as
colormaps on observation subspace (u, v) for the geocentric agent and
subspaces (ub, vb) and (n ⋅ ∇ ub, n ⋅ ∇ vb) for the egocentric agent. The

biggest difference appeared in the egocentric observations of velocity
gradient—the CFD wake offeredmuch richer signals of transverse flow
gradients, while the gradients in the VS wake weremore concentrated.
These flow gradients are essential for an egocentric navigator to dif-
ferentiate its location within or outside the wake.

To further highlight the complexity of the navigation task that the
RL policies are trained to learn, we compared the RL policies to two
naive policies: an optimal control policy arrived at by assuming a
uniform flow everywhere (Supplementary Fig. 2C) and a flow-blind
strategy where the agent turns towards the target with no knowledge
at all of the flow (Supplementary Fig. 2D). These naive policies fail
everywhere in reaching the target across the unsteady flow. They
experience limited success in reaching the target from upstream
locations, where the background flow facilitates the agent’s motion
toward a downstream target.

Lastly, we compared the geocentric and egocentric RL policies,
and total time they take to reach the target, to those obtained using
optimal control theory (Fig. 1A). The RL agents, following only
instantaneous and local observations, take similar amount of time to
reach the target, tracing nearly identical trajectories to the time-
optimal trajectory obtained with knowledge of the spatiotemporal
evolution of the entire flow field (Methods, Supplementary Fig. 4). In
addition to limited sensory requirements, a major advantage of the RL
agents over the classic optimal control is their robustness to initial and
target locations; the optimal trajectory fails at the slightest perturba-
tions to agent or target, requiring to restart the optimization process.
The RL agents succeed everywhere in the training domain and are
generalizable beyond the training conditions as discussed next.

Transfer of RL policies to unfamiliar flow environments
We tested the geocentric and egocentric policies under superimposed
rotations to the entire flow field, thus introducing a misalignment
between the wake direction and the inertial frame. Specifically, we
gradually rotated the CFD wake relative to the inertial frame (ex, ey),

Fig. 3 | Trajectories of trained agents in physical and flow observation spaces.
Trajectories are shown in black (geocentric) and blue (egocentric) for the same
initial conditions and target location. A Geocentric and (B) egocentric agents,
trained in CFD wake at Re = 400, learn to enter, slalom inside, and exit the wake.
Agents trained in the reduced VSflow representation succeedwhen tested in (C,D)
VS wake and (E, F) CFD wake (Supplementary Movies 1 and 2). Corresponding

trajectories in the spaces of flow observations are shown in the right panels of
(A, C, E) and (B, D, F) for the geocentric and egocentric agents, respectively. The
three stages of navigation are marked using dark red for wake entry, dark blue for
wake exit, black (geocentric), and light blue (egocentric) for slaloming inside
the wake.
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and at each degree of misalignment between the wake and the inertial
frame, we tested the performance of the trained agent considering
initial conditions and target locations in the same domains relative to
the wake as those explored during training (Fig. 5A, B, Supplementary
Movie 1). The performance of the geocentric policy degraded rapidly
with increasing misalignment between the wake and the reference
frame, while the egocentric policy, by construction, maintained its
high performance at any degree of misalignment. These results
demonstrate that the egocentric policy is rotationally symmetric—that
is, invariant to the absolute orientation of the wake—while the geo-
centric policy requires a priori knowledge of the alignment between
the wake and the inertial frame. Invariance to rotations and success-
fully reaching the target irrespective of the direction of the unsteady
currents is a major advantage of egocentric learning; in geocentric
learning, an incorrect estimate or a change in flow direction would
require a re-training of the policy.

We next probed the limitations of transfer learning across distinct
flow fields. We performed these tests with the reference frame prop-
erly aligned with the wake. In Fig. 3C, we tested the RL policies trained
in VSwakewhen placed in the CFDwake. Remarkably, both geocentric
and egocentric policies succeeded in entering the wake, zigzagging
between vortices to swim upstream, and even exiting the wake at an
appropriate time and location. With the egocentric policy, after the
swimmer missed the target by a small distance on its first attempt, it
swam back into the wake, and continued to navigate upstream (Sup-
plementary Movie 2). This remarkable adaptive behavior shows that
egocentric policies are resilient and robust to perturbations and has
two important implications for applying transfer learning techniques

in underwater environments67. First, it shows that the agent continues
toperformreliably in unseen environments and avoids actions thatput
it at risk87,88. Importantly, it allows the agent to continue to collect and
update its observations, which is a key factor in the success of transfer
learning89. These findings will open new opportunities for bridging the
gap between simulations and real environments44,67 using lifelong
learning algorithms90.

To investigate the broader applicability of these results, we tested
the VS-trained policy in the CFD wake using all 1000 test cases
(Fig. 4C). The geocentric policy outperformed the egocentric policy
because the latter had difficulties reaching targets further away from
thewakeof thefirst approach. This difficulty is due to inaccuracy in the
exit conditions. But even when the agent missed the target, it re-
entered the wake and tried again (Fig. 3C, Supplementary Movie 2).
The analysis in observation space (Fig. 4C) emphasizes that aspects of
the task, such as entering and zigzagging between vortices, are more
robust to transfer from low to high-fidelity flowswhile exiting thewake
is more sensitive to flow gradients. Therefore, a divide-and-conquer
approach, say using curriculum learning91,92, may optimize transfer
learning in underwater navigation by breaking up the policy into sub-
tasks and focusing on improving the most challenging aspect (here
accurate exit conditions) in higher-fidelity flow environments93.

We next tested the policies learned in CFD at Re = 400 in CFD
wakes, ranging from Re = 200 to 1000 not seen during training. In
Fig. 5C, D, we show sample trajectories at Re = 200 and 1000. Both
geocentric and egocentric policies succeeded, albeit with some
struggle at higher Re where the vortex wake became unstable. In
Fig. 5E, we report the performance of all policies trained in CFD

Fig. 4 | Flow observations and transfer from low- to high-fidelity flow repre-
sentations. Geocentric and egocentric agents trained and tested in (A, B) CFD
wake at Re = 400, (C, D) VS wake, and (E, F) trained in VS and tested in CFD wake.
Green colormap shows the success in reaching a target based on the 1000 random

test cases (Supplementary Fig. 4); sample trajectories fromFig. 3 are superimposed;
red (flow velocity) and gray (velocity gradient) colormaps show the probability
density function (p.d.f.) of flow observations for all 1000 test cases. P.d.f. plots of
observations of relative target locations are provided in Supplementary Fig. 6.
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(Re = 400) as Re number varied. Namely, we tested each of the 17
geocentric and 16 egocentric policies on the 1000 random cases at
each of the six values of Re, a total of 198,000 tests. We found that at
lower Reynolds numbers (Re = 200, 300), egocentric policies gen-
eralized better in a statistically-significant manner. At higher Reynolds
numbers, the performance of both geocentric and geocentric policies
declined, and the difference in success rate between the two became
less significant statistically. The inability of both egocentric and geo-
centric policies to keep up with flows at higher Re is caused by the

changing nature of the wake: at lower Re, the downstream wake is
stable, but at higher Re, the wake loses stability94, as evident by the
cross-stream motion of the vortices in Fig. 5D, introducing novel
physical challenges to deal with. Notwithstanding the changing flow
physics, the gradual degradation of performance with Re (Fig. 5E)
suggests ample opportunity for updating the learned policy as Re
increases using lifelong learning90.

The likelihood of flow observations based on all tests at Re = 200,
Re = 400, and Re = 1000 exhibited similar features, with periodic

Fig. 5 | Transfer to unfamiliar flows and Reynolds numbers. A Agents trained at
Re = 400 and tested in the same wake under -30∘ misalignment between the wake
and inertial frame: geocentric agent fails where the egocentric agent succeeds
(Supplementary Movies 1). BWith increasing misalignment, the success rate of the
geocentric agent quickly drops to nearly zero; whereas the performance of the
egocentric agent is invariant to such rotations. Geocentric and egocentric agents
trained at Re= 400 succeed when tested at (C) Re = 200 and (D) Re = 1000 (Sup-
plementary Movies 2). E Success rates of geocentric and egocentric agents trained
in CFD wake at Re = 400 and tested across a range of Reynolds numbers are
summarized using box plots, where the median, lower, and upper quartiles are
indicatedwith horizontal bars, and outliers aremarked by “×”. All 17 geocentric and
16 egocentric policies are included, each tested over 1000 test cases. P.d.f. plots of

visual and flow observations collected at Re = 200, 400, and 1000 are provided in
Supplementary Fig. 7. Agents trained at Re = 1000 succeed when tested at (F)
Re = 1000 and (G) Re = 600. H Success rates of geocentric and egocentric agents
trained in CFD wake at Re = 1000 and tested across a range of Reynolds numbers
are summarized using the same box plot convention as in (C). All 5 geocentric and 5
egocentric policies are included, each tested over 1000 test cases. In (E, H) to
evaluate the difference in performance between the egocentric and geocentric
policies, a two-sample t-test is used119,120. The null hypothesis states that there is no
significant difference in success rates. A smallerp-value indicates stronger evidence
against the null hypothesis, suggesting a more significant difference in perfor-
mance. * p <0.05, ** p <0.01, *** p <0.001.
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oscillations in the space of flow observations reflecting the zigzagging
motion of the agent inside the wake (Fig. 4). However, the magnitude
of flow signals differed with Re number. Transfer from Re= 400 to
Re = 200, although the flow character remains unchanged, means
transfer to weaker flows and requires interpolation of flow observa-
tions acquired during training. Transfer to higher Re means stronger
flows, with distinct character, and requires extrapolation of flow
observations, which is notoriously difficult for learning-based
models95. Consideration of the physics of the flow environment is
thus of paramount importance in assessing the limitations of transfer
learning to unfamiliar flows.

To further assess the effects of the flow field in which the agents
are trained on transfer to novel flows, we next trained both geocentric
and egocentric policies at Re = 1000. For each set of observations, we
repeated the training five times. Both policies successfully converged
in all instances of training, demonstrating thatRL training is possible in
diverse flow regimes (Fig. 5F and Supplementary Fig. 3). Interestingly,
trajectories of the policies trained and tested at Re = 1000 are similar
to the trajectory of the egocentricpolicy trained atRe = 400and tested
at Re = 1000, indicating that, when successful, the trajectory of the
transferred egocentric policy was time-optimal in the new environ-
ment (Fig. 5). For each of the 10 training instances at Re = 1000, we
systematically tested the resulting policy on the 1000 random cases at
each of the six values of Re, a total of 60,000 tests (Fig. 5H). At Re =
1000, geocentric and egocentric policies succeeded almost surely. As
Re decreased, success rates declined gently at first, and more steeply
below Re = 600. At Re = 600, egocentric policies outperformed geo-
centric policies; see Fig. 5G for sample trajectories at Re = 600 illus-
trating failure of the geocentric policy in reaching the target, where the
egocentric policy succeeds under the same conditions. At even lower
Re, both policies failed (Fig. 5H). Taken together, the results in Fig. 5E,
H show that both egocentric and geocentric policies successfully
transfer to new flows at Re values close to those used during training,
but struggle to adapt when the change in Re induces substantial
changes in the nature of thewake. In particular, transfer fromhigher to
lower Re favors egocentric policies, and success of transfer to novel
flows is asymmetric: it depends on the nature of the training flow.

Transfer of RL policies to conditions unseen during training
We probed the performance of both egocentric and geocentric navi-
gatorswhen subjected to novel conditions unexploredduring training.
In Fig. 6A, B, we tested the behavior of both policies starting at loca-
tions upstream of the target. The agent with geocentric observations
failed immediately and headed outside thewake. The egocentric agent
performed better; it initially turned toward the target, and when it
missed, it went back into the wake, zigzagged through the vortices,
and exited thewake to locate the target. This remarkable robustness to
new conditions is a hallmark of egocentric policies; it emphasizes that
the policy itself acts as a resilient feedback controller with built-in
redundancy that ensures functionality even in the event of failure.
When placed downstream of the target (Fig. 3C), both egocentric and
geocentric policies performed well at moderate downstream loca-
tions, but further downstream, the egocentric policy failed first. The
failure occurred despite the agent’s attempt to enter the wake and
engage with the vortices (Supplementary Movie 3).

We systematically challenged the swimmer to reach a fixed target
located at the center of the training domain starting from any initial
position in the flow field, including at locations unexplored during
training (Fig. 6). To standardize these tests, we initialized the agent’s
position on a regular grid over the entire fluiddomain and, at eachgrid
point, we initialized the agent orientation using 36 distinct initial
orientations evenly distributed from 0 to 360∘. We fixed the initial
phase to of the flow. In total, we performed 34,020 test cases per
policy. As expected, both geocentric and egocentric policies almost
surely succeededwhen startingwithin the training domain (Fig. 6C, D).

The egocentric policy generalized better upstream of the training
domain (90% success of egocentric policy versus 55% success of geo-
centric policy). The geocentric policy performedbetter at downstream
locations (63% success of geocentric policy versus 47% success of
egocentricpolicy), but bothpolicies reached a limitbeyondwhich they
failed (straight gray lines in Fig. 6C, D). Failure downstream of the
training domain occurred before physical limitations due to viscous
decay of the vortex structures were reached, reflecting the limitations
of the policies themselves. We return to this point later.

In addition to the success rate, we systematically evaluated the
average time that successful trajectories spent to reach the target
(Fig. 6E, F). On average, the geocentric navigator spent slightly less
time than the egocentric navigator; namely, the geocentric agent was
on average8% faster than the egocentric agentwhen starting inside the
training domain, but the difference was negligible, less than 1.5%,
outside the training domain; the average total time to reach the target
being nearly 23 (geocentric) and 25 (egocentric) in units of D/U inside
the training domain versus 35 (geocentric) and 35.4 (egocentric) out-
side the training domain.

Interpretation of underwater RL policies
Intuitively, when placed directly upstream of the target, we expect
even a naive navigator that orients toward the target, ignoring entirely
the flow field, to reach the target simply by drifting downstream
(Supplementary Fig. 2D, Methods). A slightly savvier navigator, aware
of only the background uniform flowU could exploit this flow to reach
the target fromabroader range of upstream locations (Supplementary
Fig. 2C, Methods). But the geocentric policy has no such “intuition” of
the flow. Its failure at upstream locations is due to policy limitations.
When collecting observations in an inertial frame, upstream situations
are novel to the policy. The egocentric agent performs better because
the self-centric view of the flow and target provides a richer set of
observations.

Far downstream, we expect flow physics to impose limits on what
is achievable by even the savviest agent. Vortices decay downstream.
This viscous diffusion is best illustrated in flowphysics using theOseen
solution where an initially concentrated vortex decays spatially due to
viscosity (Supplementary Fig. 5). Far downstream, the wake’s stream-
wise velocity u approaches the freestream velocity U and the flow
exhibits weaker gradients, prohibiting the swimmer from exploiting
the wake to move upstream. We thus expect the performance of both
policies to deteriorate as the vortex intensity decreases (Supplemen-
tary Fig. 5), with a faster drop in the performance of the egocentric
policy because it relies on flow gradients to navigate and is thus more
disadvantaged in flows with weaker gradients.

To elucidate the reasons for the disparity in performance between
geocentric and egocentric policies, we analyzed these policies using
tools from dynamical systems theory35,96–98. From the dynamical sys-
tems perspective, the average policy defines a deterministic function
_θ=πðoÞ, and this averaged rotational dynamics forms a “dynamical
flow field” over the phase space of action and observations. This is a
high-dimensional space that prohibits direct visualization of the policy
and complicates the analysis of its stability and convergence to the
target position35,98. Luckily, at a given location (x, y) and phase t, the
observations dependon the agent’s headingdirection, and the average
policy can be viewed as a dynamical system _θ=πðoðθÞÞ over the phase
space ðθ, _θÞ. We thus defined the field of preferred direction θp as fol-
lows: of all potential orientations θ at a given location (x, y) andphase t,
the preferred direction is a stable equilibrium of the dynamical system
_θ=πðoðθÞÞ for which the average policy _θ=πðoðθÞÞ=0 vanishes and its
derivative with respect to θ is negative ∂ _θ=∂θ<0 (Fig. 6G, inset).

In Fig. 6G, H, we plotted the preferred directions over the entire
domain for the geocentric and egocentric policies. Locations with
multiple arrows imply multiple preferred directions. The general-
izability of the egocentric policy upstream of the target (Fig. 6D)
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correlates with its tendency to have multiple preferred directions at
these locations, increasing the chance of taking a correct action. In
contrast, at these locations, the geocentric policy instructs the agent to
confidently take action towards a single preferred direction that does
not lead to the target (Fig. 6C, E), exhibiting a worst-case scenario in
decision-making. This explains why the geocentric policy behaves
much worse than the naive policy at upstream locations.

Downstream and outside the wake, the geocentric policy tries to
minimize either the downstream drift (Fig. 6G, orange arrows), the
time to reach the wake (Fig. 6G, green arrows), or a trade-off between
both. The egocentric policymostly instructs the agent tomove into the
wake while minimizing downstream drift (Fig. 6H). Downstream and
inside thewake, however, preferred directions of the geocentric policy
clearly favor upstream motion (Fig. 6G), while the egocentric policy
exhibits multiple preferred directions that confuse the agent and lead
to failure (Fig. 6H). This explains why the performance of the ego-
centric policy deteriorates faster than that of the geocentric policy at

downstream locations. The ability of the geocentric policy to unam-
biguously favor upstream directions inside the wake can be attributed
to the fact that it has knowledge of the agent’s orientation relative to
the orientation of the wake (through the a priori knowledge of the
wake alignment with the inertial frame (ex, ey) and the agent’s obser-
vation θ), whereas the egocentric policy doesn’t. In a direct compar-
ison of the trajectories in Fig. 6A, B to the vector field of preferred
directions in Fig. 6G, H, it is clear even when the egocentric agent is
initially placed at a location with an unambiguous preferred direction
and tries to enter and engagewith thewake, failure occurs as the agent
moves into locations with multiple preferred directions.

This analysis has several important implications. It shows that
ambiguity in the preferred direction is favorable when flow phy-
sics acts in concert with the desired task (upstream locations),
but ambiguity is detrimental when flow physics challenges the
desired task (downstream locations). It also shows that the
application of tools rooted in dynamical systems theory unveils

Fig. 6 | Transfer to locations outside the training domain and interpretation of
RLpolicies. AGeocentric and (B) egocentric agents starting from initial conditions
unseen during training: geocentric agents fail upstream of the target location but
outperform egocentric agents downstream of the target (SupplementaryMovie 3).
Success rates and consumed time of (C, E) geocentric and (D, F) egocentric agents
reaching a fixed target (*) starting anywhere in the wake (Green colormap) with
100% success of both policies within the training domain (black circle), 58% and
66% in favor of egocentric policy outside the training domain, and overall 60% and
68% success across the entire domain. Both policies fail downstream: solid lines

marking failure of the geocentric policy align with the direction of the “time-opti-
mal” strategy (Supplementary Fig. 2A) and those of the egocentric policy align with
the direction of the “drift-optimal” strategy (Supplementary Fig. 2B). The field of
“preferred orientations” defined by the stable fixed points of the average policy for
(G) geocentric and (H) egocentric agents explains the behavior of the trained agent
inside and outside the training domain. Preferred orientations that align with time-
optimal and drift-optimal strategies are highlighted in green and orange,
respectively.
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promising paths for evaluating and interpreting the behavior of
machine-learned policies.

Expanding the training conditions: when more is less
Could the agent perform better when trained over the entire flow
domain? To address this question, we trained both geocentric and
egocentric navigators by sampling initial conditions over the entire
flow domain while keeping the target location within the same circular
domain as before and systematically analyzed the converged policies
using the tools presented in Fig. 6 (Supplementary Figs. 3 and 8).
Surprisingly, compared to the policies trained by sampling over the
limited set of initial conditions, both geocentric and egocentric agents
performed worse when trained over the entire domain. Although
trained by sampling over the entire domain, the policies hardly learned
to navigate across the vortical wake and were successful only over a
limited set of initial locations upstream of the target, with the ego-
centric policy exhibiting marginally better success rates, and both
policies requiring, on average, the same overall time to reach the tar-
get. These results underscore that more is not always better. They
point to an important fact that hinders learning when expanding the
training domain: because when starting upstream from the target, it is
relatively easy to reach the target even for a naive agent, the agent
quickly learns this policy and gets trapped in a local optimum, which
prevents it from continuing to improve itself when exposed to more
challenging initial conditions. This pitfall affects both geocentric and
egocentric navigators equally. The training domain employed in Fig. 1
represents one of the most difficult, yet physically achievable, sce-
narios for crossing an unsteady wake.

Lastly, we returned to the egocentric policy trained over the
smaller domains of initial and target locations introduced in Fig. 1. We
asked how would the RL policy be affected when limiting the obser-
vations of the target location to only the angular position of the target
relative to the agent, without giving the agent any information about
its actual distance to the target. Visually, it is easier to perceive the
angular location of an object than its distance, because smaller objects
that are close are indistinguishable from larger objects that are far99–101.
Thus, instead of (Δxb, Δyb), we trained an egocentric RL policy using a
single angular observation arctanðΔyb=ΔxbÞ. We tested the perfor-
mance of the so-trained policy both inside and outside the training
domain (Supplementary Fig. 9). Compared to the egocentric policy
with full knowledge of the target position, the policy with only partial
knowledge of the target heading performed worse when tested inside
the training domain, but, surprisingly, it generalized better when tes-
ted starting at novel locations not observed during training. Outside
the training domain, the success rate of the egocentric policy with full
knowledge of the target position was 56.54%, while that of the ego-
centric policywithonly knowledgeof the angular positionof the target
succeeded at 79.30% rate. These results emphasize that failure farther
downstream from the training domain is a persistent feature of the RL
egocentric policy, independent of the wake representation, CFD
simulations (Fig. 6D) or vortex street (Supplementary Fig. 9A),
reflecting an inherent difficulty in the task itself. But, more impor-
tantly, these results demonstrate that the ability of the agent to
transfer its experience during training to novel challenging situations
depends on the nature of the observations: a choice that ensures a
wider variety of observations are encountered during training gen-
eralizes better to unseen situations. These surprising results under-
score the importance of the choice of the training domain and
observations in designing generalizable and robust underwater navi-
gation policies.

Discussion
We investigated a fundamental problem of underwater navigation
within a flow regime of direct relevance to medium-scale robotic

underwater vehicles55. At these scales, underwater navigation often
involves interactions with unsteady wakes of persistent and coherent
vortex structures at intermediate Reynolds number, presentingunique
challenges distinct from those faced by millimeter-scale organisms
navigating turbulent flows39,60,102. Learning to enter, slalom within, or
exit such coherent flows is thus essential for any underwater robotic
mission involved in ocean exploration and surveillance8,38,44,103. We
analyzed, using a combination of physics-based simulations and rein-
forcement learningmethods, the feasibility of robot-centric learning in
such flow environments. Unlike existing learning studies that require
inertial observations8,38, say with the help of a satellite, or continuous
measurements of a global direction of gravity60 or wind39, in robot-
centric learning, observations are collected in the robot’s own world,
through on-board sensors, without a priori or acquired knowledge of a
global flow direction or inertial frame of reference.

Our study demonstrated that (1) learning underwater navigation
from a robot-centric perspective is feasible provided that the robotic
agent senses local flow velocities and local flow gradients; (2) robot-
centric policies respect physical symmetries and are invariant to flow
rotations; (3) robot-centric policies exhibit adaptive behavior in
unknown environments, allowing the robot to re-enter the wake and
try again when missing the target, and (4) robot-centric policies facil-
itate transfer learning from reduced to high-fidelity flow environments
and between different Reynolds number flows.

Our analysis of the sensory requirements for autonomous
underwater navigation (Table 1) indicates that egocentric sensing in
the agent’s own world eliminates potential time delays and computa-
tions inherent to assessing inertial signals8,83 at the expense of
requiringmore sensors to observe spatial variations in the flow field at
the scale of the navigator.We envision that, to learnmore complex and
diverse navigation tasks in future underwater8,44 and aerial33,104 robotic
applications, flow gradients measured at multiple locations and
directions53,105, using a distributed array of flow sensors57 along the
swimmer, and supplemented by the ability to remember and update a
history of flow observations39,57,58,102 might be necessary. These direc-
tions will be investigated in future work.

In addition to its implications for robotic systems, our study
opens avenues for understanding the link between flow sensing and
behavior in biological systems39,106. To connect with biological solu-
tions, it is crucial to recognize that flowand spatial representations are
inherently shaped by the ecological system and the organism’s mor-
phology and brain structure107. For example, in plankton—millimeter
scale organisms that drift in water currents—many can swim, detect
flow velocity gradients, and sense light or gravity to move upward to
nutrient-rich surface waters at night and downward to avoid visual
predators during the day108–110. The environmental cues and navigation
mechanisms that enable planktonic vertical migration in turbulent
waters60 are inherently distinct from those employed by a fish-inspired
robotic agent navigating a coherent flow field created by a conspecific
or predator38,44,77,111. Aquatic organisms that interact with coherent
vortex structures have bilateral arrays of flow sensors suited for
computing flow gradients49,53, e.g., fish lateral line system65,112,113 and
harbor seal whiskers9. The methods we propose here offer an exciting
opportunity for future studies that unravel how flow-sensing abilities
in aquatic organisms have been shaped, not only by the size and
morphology of the organism, but also by the flow environment it
navigates.

Taken together, our work establishes promising directions for
learning, from a robot-centric perspective, in dynamically changing
physical environments, provides systematic analyses particularly sui-
ted for bridging the gap between simulations and real-world environ-
ments, and opens avenues for future investigation of the mapping
between environmental conditions and sensory requirements in bio-
logical and robotic systems.
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Methods
Flow field models
We considered a cylinder of diameter D fixed in a background flow of
uniformvelocityU, traveling from right to left. The cylinder diameterD
and the freestream speed U are used as characteristic length and
speed, respectively. The spatial-temporal evolution of the flow field is
governed by the incompressible Navier-Stokes equations, given in
dimensionless form as

∂u
∂t

+u � ∇u= � ∇p+
1
Re

Δu, ∇ � u =0, ð1Þ

where u(x, y, t) = (u(x, y, t), v(x, y, t)) denotes the flow velocity field as a
function of space and time, and p(x, y, t) is the pressure field. Here,
Re =DU/ν is the Reynolds number, where ν denotes the kinematics
viscosity of the fluid. We impose a uniform-velocity inlet on the right
boundary and no-slip boundary conditions on the surface of the
cylinder. The flow field is solved with IBAMR, an open-source
implementation of the immersed boundarymethod73,74,114,115. We chose
a [−24, 8] × [−8, 8] rectangular computational domain, with the
cylinder centered at the origin (0, 0). The coarsest Eulerian is a
uniform 128 × 64 Cartesian grid, with three layers of adaptive Eulerian
mesh refining it; the refinement ratio between two layers is 4; the
refinement region is based on both the solid boundary and vorticity.
The simulation time step is Δt = 2 × 10−4. In Supplemantary Fig. S1A is a
depiction of the wake at Re = 400, where the resultant Strouhal
number St = fD/U =0.22 is consistent with past experimental
measurements116. We additionally simulated a series of cylinder flows
at Reynolds numbers ranging from 200 to 1000.

To simplify the simulation environment, we used a reduced-order
inviscid model of the von Kármán vortex street, consisting of two
infinite rows of equal-strength Γ, but opposite-sign, point vortices, at
lateral offset 2A and wavelength λ86. The flow field u(x, y, t) ≡ (u, v) can
be analytically described by in complex notation z = x + iy and w =
u − iv,

wðz, tÞ= iΓ
2λ

cot
πðz + iA� UstÞ

λ
� cot

πðz � λ=2� iA� UstÞ
λ

� �
� U,

ð2Þ

Here,Us is themoving velocity of the vortex street as the superposition
of its self-induced constant velocity (to the right) and the freestream
flow velocity U (to the left),

Us =
Γ

2λ
tanh

2πA
λ

� U ð3Þ

In Supplemantary Fig. S.1B, we chose λ = 4D, A = 0.2D, Γ = 3UD to
emulate the high-fidelity wake at Re = 400. We regularized the flow
near the point vortex singularities to avoid unreasonably large
velocities at the vortex location.

Optimization problem
Zermelo problem considers a swimmer moving at constant velo-
city V crossing a river of uniform speed U of width H12. Here, we
considered V < U and let t= ðcos θ, sinθÞ be the swimmer’s
heading direction, with θ the angle between the heading of
the swimmer and the flow direction. Given this setup, the
course velocity of the swimmer is ð�U +V cosθ,V sinθÞ. Thus,
the time required for crossing the river is H=ðV sinθÞ, and the
streamwise drift distance is HðU � V cosθÞ=ðV sin θÞ. The orienta-
tion θ can be optimized to minimize either the time or the

streamwise drift (Supplementary Fig. 2A, B),

Time optimal : θopt =
π
2
, Drift optimal : θopt = cos

�1 V
U
:

ð4Þ

Consider now point-to-point navigation in the same uniform flow
u ≡ (−U, 0) such that the swimmer with velocity V and heading
t= ðcosθ, sin θÞ needs to navigate to a target located at Δx = (Δx, Δy)
relative its own position. An optimal strategy for minimizing the total
time to reach the target consists of choosing a constant heading
direction,

θopt = � arcsin
UΔy

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 +Δy2

p + arctan
Δy
Δx

: ð5Þ

This equation has no solution when ∣ UΔy

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 +Δy2

p ∣>1.

For navigating across an unsteady wake with associated velocity
field u(x, y, t), we formulated a constraint optimization problem, given
full knowledge of the vector field u. The optimization problem is to
find the optimal rate of changeΩ= _θ thatminimizes the overall time of
travel J

argmin
_θðtÞ

J = argmin
_θðtÞ

Z T

0
dt ð6Þ

subject to the equality constraints

Boundaryconditions : xð0Þ= x0, yð0Þ= y0, θð0Þ= θ0, xðTÞ � x*
� �2

+ yðTÞ � y*
� �2

≤ ð0:15DÞ2:
Equations of motion : _xðtÞ =uðx, y, tÞ+V cosθ, _yðtÞ = vðx, y, tÞ+V sin θ:

ð7Þ

We discretized this problem and used collocation methods to
numerically solve for optimal rate of change of heading directions
_θoptðtÞ that guide the swimmer to the desired destination across the
unsteady wake; this is in contrast to ref. 38, where they directly opti-
mized the heading direction θ(t). The optimization problem is solved
using the function fmincon in MATLAB.

Model-free deep reinforcement learning
For navigating across an unsteady wake, we trained the artificial agent
using Deep RL to maximize a cumulative reward through repeated
experiences with the surrounding environment. The reward was
composed of twoparts: a sparse reward of 200D given as a completion
bonus once the swimmer reached within 0.15D from the target, and a
dense reward offered at every timestep equal to the change in distance
between the swimmer and the target. Swimmers that exited the
simulation domain, collided with the cylinder, or exceeded a max-
imumcompletion timewere treated as unsuccessful. The RL algorithm
maximized the return, which is the cumulative discounted rewardwith
discount factor γ =0.995.

Rt =
Xtf
t0 = t

γt
0�t rt0 ð8Þ

Here, time is implicitly minimized during training because of the
structure of the return Rt, or objective function as the discounted
reward at the initial state. Given γ < 1, later rewards are discounted
more. The sparse component of the reward—the success bonus—is
significantly larger than the dense reward, but it is given to the agent at
the last timestep only if the target is reached, thus the overall value of
Rt highly depends on the weight before the sparse reward component.
Given that the incremental reward is the increase or decrease in rela-
tive distance at each time step, and because rewards received at later
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time steps contribute less to Rt, the RL training implicitly converges to
a time-optimal strategy, as opposed to the optimal control approach
where time is explicitly minimized (6). In cases when the trained RL
policy does not reach the minimal time derived from optimal control,
it occurs primarily because of the limitations in available sensory
information, which hinders the RL agent’s ability to make perfectly
informed decisions at every step (see Supplementary Fig. 4).

At the beginning of each training episode, we chose the target
location (x⋆, y⋆) randomly inside a circular area of radius 2Donone side
of thewake and the swimmer’s initial position (xo, yo) randomly inside a
circular area of the same size on the other side of the wake. We choose
the swimmer’s initial orientationθo randomly between0 and 2π; we set
a random initial time to for the start of the training relative to the wake
evolution, which we denote from hereon as the initial phase.

We used V-RACER, a model-free deep RL algorithm, implemented
in Smarties117 to train the agent. The V-RACER algorithm has proven
suitable for control problems in complex flow fields34,118. The policy
and value function together are approximated by a 128 × 128 feedfor-
ward deep neural network with an additional residual layer that
bypasses the second regular layer and additional weight as the stan-
darddeviation for action sampling.We set the decision time interval to
0.1 unit time in units ofD/V, andwe constrained the angular velocity to
lie in the interval _θ 2 ½�4, 4� in units of V/D.

To consistently evaluate the performance of the RL policies
obtained from distinct training and observations, we prepared 1000
test cases by randomly sampling the swimmer’s initial position (xo, yo)
and orientation θo, initial phase to, and target position (x⋆, y⋆), all taken
within the same ranges used during training (Supplementary Fig. 4).
We tested each of the 105 policies on these 1000 cases (a total of
105,000 tests). Success rates are summarized in Supplementary
Table 1.

Data availability
The data generated in this study have been deposited in the Code
Ocean database under accession code https://doi.org/10.24433/CO.
7749998.v1.

Code availability
Code is openly available on Code Ocean at https://doi.org/10.24433/
CO.7749998.v1.
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