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Abstract— Fish often swim in schools. Flow interactions are
thought to be beneficial for schooling. Recent work shows
that flow interactions cause a pair of free inline swimmers,
flapping at the same frequency, to passively stabilize at discrete
locations relative to each other and that these passively stable
formations are energetically beneficial. However, the stability
of these formations is sensitive to finite mismatch in flapping
frequencies. Here, we propose a local flow sensing model
and feedback controller that stabilize a pair of frequency-
uncoordinated swimmers into a cohesive formation. Our find-
ings bear relevance to understanding fish collective behavior
and for designing bio-inspired underwater robotics.

I. INTRODUCTION
Fish schools are ubiquitous. Half of the known fish species

exhibit schooling behavior during some phase of their life
cycle [1]. Flow interactions are thought to provide hydro-
dynamic benefits to school members [2], [3], [4], but a
direct assessment of this hypothesis is challenging because
of the complexity of resolving the unsteady flows in multiple
interacting fish ([5], [6]) and of deciphering the sensing
and feedback mechanisms that individual fish use when
schooling ([7], [8], [6], [9]). To simplify the problem, physi-
cal ([10], [11], [12], [13], [14], [15]) and mathematical ([16],
[17], [18], [19]) models considered flapping foils interacting
via their own self-generated flows, with no sensing or ability
to adjust their flapping motion. Pairs of foils undergoing
prescribed heaving [14], [15] or pitching [18], [19] oscil-
lations at the same frequency and amplitude were placed
in tandem and allowed to swim freely. Experiments and
simulations proved that flow interactions stabilize the pair at
constant spacing relative to each other [14], [15], [18], [19].
These emergent formations are both stable and energetically
beneficial [18], [19]. The relative distance between leader
and follower in these emergent formations varies linearly
with the difference in flapping phase [14], [19]. This linear
phase-distance relationship was also observed in live fish and
associated with energy saving [20].

Most studies focused on coordinated swimmers that flap at
the same amplitude and frequency. In [14], pairs of uncoor-
dinated swimmers were considered. The authors examined,
experimentally and in reduced-order models, the stability
of the emergent formation subject to mismatch in flapping
amplitude and/or frequency. Two swimmers coordinated in
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frequency with minor mismatch in amplitude can stabilize
passively and swim together in a coherent formation. How-
ever, subtle frequency mismatch leads to instability and loss
of school cohesion.

In this work, to stabilize the formation of a pair of swim-
mers flapping at different frequencies, we devise a feedback
controller based on local flow sensing inspired by [21]. We
consider frequency control instead of amplitude control for
two reasons. First, as suggested in [22], when fish try to
accelerate or decelerate, they typically adjust their undulation
frequency while maintaining the same body deformation
amplitude for optimal hydrodynamic performance. Thus,
developing a frequency controller is of biological relevance.
Secondly, frequency is more detrimental to the stability of
emergent formation as demonstrated in [14].

The rest of this paper is organized as follows. In Sec. II, we
present the reduced-order model employed in [14] and ana-
lyze the stability of open-loop dynamics, with no feedback
control. In Sec. III, we explore local flow sensing strategies
that a follower can use to estimate the frequency of the leader.
In Sec. IV, we describe the design and performance of the
proposed controller. We summarize our findings and discuss
future directions in Sec. V.

II. MATHEMATICAL MODEL

We employed a time-delayed particle model [14] to de-
scribe a pair of flow-coupled oscillating swimmers (Fig. 1).
Each swimmer is modeled as a point mass that oscillates
in the y-direction to propel itself in the x-direction. Let
y1 = A1 sin(2πf1t) and y2 = A2 sin(2πf2t − ϕ) denote
the transverse oscillations of the leader and follower, re-
spectively, where Ai, fi, i = 1, 2, are the amplitude and
frequency of oscillations, and ϕ is the phase difference
between two swimmers, and let x1(t) and x2(t) denote their
swimming motion.

Each foil experiences a thrust force proportional to the
square of its vertical velocity relative to the ambient fluid
and a drag force proportional to the square of its horizontal
velocity relative to the ambient fluid [11], [23], [24], [14],
namely,

Fi = CT (ẏi − v(xi))
2, Di = CD(ẋi − u(xi))

2, (1)

where u(xi) and v(xi) are the components of the fluid
velocity in the x and y-directions at the location of the ith

swimmer, and CT and CD are the thrust parameter and drag
parameter, respectively.

The leader swims into still water, which means u(x1) =
v(x1) = 0 and creates a transverse wake (u(x2) = 0) in
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Fig. 1. Schematics of time delayed particle model. Each swimmer is
modeled as particles oscillating in vertical direction A sin(2πft) and left
a wake which decays exponentially with time [14], [19].
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Fig. 2. Parametric study of the model behavior over frequency ratio and
amplitude ratio. Other parameters are fixed at τ = 1, A1 = sin 15◦,
f1 = 1, ϕ = 0. Reproduced independently from [14].

the fluid environment for the follower to interact with. The
transverse velocity of the leader’s wake at its present location
is the same as its oscillatory speed ẏ1(t). This wake decays
exponentially with time e−∆t/τ , where ∆t denotes the time
passed since the leader occupied that location. The parameter
τ depends on the scale of the problem: larger τ models
weaker viscous effect or larger Reynolds number. Say at
t−∆t, the leader occupied the position where the follower is
now located x1(t−∆t) = x2(t). The follower thus interacts
with a transverse wake of velocity e−∆t/τ ẏ1(t − ∆t). The
equations of motion for both swimmers (i = 1, 2) are given
by

mẍi = −Fi + CDẋ2
i , (2)

where

F1 = CT ẏ
2
1 ,

F2 = CT (ẏ2(t)− e−∆t/τ ẏ1(t−∆t))2,

x1(t−∆t) = x2(t).

(3)

Here, m is the mass of each swimmer. The average swim-
ming speed of the leader is solved analytically as U1 =
πA1f1

√
2CT /CD, but the swimming speed of the follower

is solved numerically via Runge–Kutta methods. Solutions
are shown in Fig. 3, where the separation distance d between
the two swimmers is scaled by the wavelength of the wake
left by leader λ = U1/f1.
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Fig. 3. Scaled distance as a function of time for different parameter values.
A f2/f1 = 1, A2/A1 = 1, τ = 1, ϕ = 0 with different initial distance;
B f2/f1 = 1, A2/A1 = 1, τ = 1 with phase ϕ ranges from 0 to 2π;
C f2/f1 ∈ [0.5, 1.5], A2/A1 = 1, τ = 1; D f2/f1 = 1, A2/A1 ∈
[0.5, 1.5], τ = 1; E f2/f1 = 0.9, A2/A1 = 1.2, τ = 1; F f2/f1 = 1.1,
A2/A1 = 0.9, τ = 1; G f2/f1 = 0.9, A2/A1 = 1.2, τ = 1, 2; H
τ = ∞ with cases from A, B, E, and F. Other parameters are kept the
same as CD = 0.25, CT = 0.96, m = 1.325g/cm2, A1 = sin 15◦,
f1 = 1 [14], [19].

Following [14], we explored the behavior of the two
swimmers over the entire space of frequency and amplitude
ratios f2/f1 and A2/A1 (Fig. 2). For each set of parameter
values, we calculated the separation distance between the
leader and follower for 16 different initial conditions ranging
from d0/λ = 1 to d0/λ = 16. We found, consistent
with [14], that the swimmers reach one of five characteristic
behaviors: (1) reach a stable formation and swim together
in a relative equilibrium; (2) always separate; (3) always
collide; (4) separate or collide based on initial conditions;
or (5) reach stable periodic limit cycles.

It is instructive to show representative trajectories for each
of the five behaviors identified in Fig. 2. In Fig. 3A, we
considered the case when the frequency and amplitude of
two swimmers are the same and the two swimmers oscillate
inphase (ϕ = 0). Depending on the initial separation dis-
tance, the follower positions itself at one of multiple relative
equilibria, consistent with [14], [18]. Each equilibrium has
its own basin of attractions, as illustrated by dashed grey
lines. When the swimmers flap at a phase lag relative to each
other (ϕ ̸= 0), the equilibria shift following a linear phase-
distance relationship ϕ/2π = d/U1f1+const (Fig. 3B) [14],
[20], [19].

We next considered cases when the follower flaps at a mis-
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match in either amplitude or frequency relative to the leader
(Fig. 3C and D). When the follower flaps at larger frequency
(f2/f1 > 1) or amplitude (A2/A1 > 1.2), it always collides
with the leader regardless of initial conditions. When the
follower flaps at smaller frequency (f2/f1 < 1) or amplitude
(A2/A1 < 0.8), the two swimmers always separate. The
stability of the formation is more sensitive to differences
in frequency; indeed, there is a big margin of amplitude
mismatch (A2/A1 ∈ [0.8, 1.2]) for which uncoordinated
swimmers can swim together cohesively, but a tiny amount
of frequency mismatch makes the school unstable (Fig. 2).

The separation or collision can be explained intuitively
as follows. Higher amplitude (higher frequency) generates
higher thrust and vice versa (Eq. 2). However, frequency
mismatch brings additional and unique effects. It introduces
a time-dependent phase shift ϕ(t) = (f1 − f2)t. When
the frequency of the follower is smaller than that of the
leader (f2 < f1), the phase ϕ constantly increases with
time, and given the aforementioned linear phase-distance
relationship, the equilibrium distance d also increases. That
is, f2 < f1 increases phase difference and decreases thrust
on the follower, both lead to an increased separation between
leader and follower. For f2 > f1, phase decreases and thrust
increases, and both effects lead to collision.

We lastly considered two cases when both amplitude
and frequency are mismatched (Fig. 3E,F). In Fig. 3F, the
frequency of the follower is larger (f2 > f1) and the vertical
velocity of the follower is smaller (A2f2 < A1f1). Here,
depending on initial conditions, the follower either separates
from the leader or collides with the leader. Combinations of
amplitude and frequency ratios that lead to either collision
or separation based on initial conditions are categorized as
unstable [14] (Fig. 2).

When the frequency of the follower is smaller than that
of the leader (f2 < f1) but the transverse velocity of the
follower is larger (A2f2 > A1f1), they form a stable limit
cycle (Fig. 3E). When the follower is close to the leader, the
leader’s wake strongly affects the follower’s motion and the
phase effect discussed earlier pushes the follower away from
the leader. When the separation distance is larger, exponential
decay of the wake makes the motion of the follower less
affected by the wake. Because the transverse velocity of the
follower is larger, its self-propelled velocity is larger than
the leader. Thus, the follower swims forward and forms the
limit cycle. The limit cycle is a global attractor in the system
because it only appears at the position where the magnitude
of the phase effect and thrust effect are close. Note that the
relative equilibria of the coordinated swimmers ( A2/A1 = 1
and f2/f1 = 1) are independent of τ (Fig. 3H), but the limit
cycles that emerge in the uncoordinated swimmers are scale-
dependent; they depend on the value of τ (Fig. 3G). When
considering the limit τ → ∞, the limit cycle disappears
(Fig. 3H).

III. FLOW SENSING MODEL

The parametric study in Fig. 2 shows that the pair of swim-
mers lose cohesion when the follower is flapping at the same

amplitude (A2/A1 = 1) but different frequency (f2/f1 ̸= 1)
from the leader. To form a coherent school, an intuitive idea
is for the follower to try to match its own frequency with the
frequency of the leader. However, the frequency of the leader
f1 is unknown to the follower. Thus, we need to estimate it
based on the follower’s local information. The follower has
access to its own swimming velocity ẋ2(t), the flow velocity
at its own location e−∆t/τ ẏ1(t−∆t), and the hydrodynamic
force F2(t) acting on it. Here we discuss scenarios by which
the follower, from this local information, can estimate the
flapping frequency f1 of the leader.

A. SIMPLIFIED SENSING SCENARIOS

We first considered a one-way coupled problem in which
the follower probes the flow velocity in the wake of the
leader, but its swimming motion is not influenced by the
leader’s wake. Thus, the swimming speed of the follower is
given by U2 = πA2f2

√
2CT /CD and its motion is given

by x2(t) = −U2t. The flow velocity left by the leader is
given by v(x, t) = 2πA1f1e

−(x+U1t)/U1τ cos(2πf1x/U1).
The signal sensed by the follower as a function of time is
v(x2(t), t) = 2πA1f1e

−(−U2t+U1t)/U1τ cos(2πf1U2/U1t).
Thus, the dominant frequency is f1U2/U1 = f2A2/A1.
Under this scenario, the follower cannot decode information
about the leader’s oscillatory frequency.

We next considered that both swimmers are tethered, in
which the gap distance d(t) between them is kept constant
d, and the incoming flow velocity is the self-propelled
swimming speed of the leader U1. Here, ∆t = d/U1 is
a constant. The flow velocity sensed by the follower is
2πA1f1e

−d//U1τ cos(2πf1(t − d/U1)), in which the fre-
quency of leader f1 can be decoded by a frequency analysis.
Alternatively, if the follower senses the fluid force instead
of flow velocity, the force can be decomposed can be
represented in a Fourier series expansion, with four Fourier
modes |f1−f2|, f1+f2, 2max(f1, f2), 2min(f1, f2), which
encode the leader’s frequency f1. In fact, the follower only
needs the first two Fourier modes are sufficient to decode
the frequency of the leader.

B. FLOW SENSING DURING FREE SWIMMING

The simplified scenarios discussed above are insufficient to
decode the frequency of the leader while swimming freely.
To this end, we considered the original two-way coupled
problem in Eq. (2). We used the flow velocity v(x2(t), t)
at the location of the follower as sensory cue and took the
Fourier series expansion of this flow velocity. We considered
the limit of high Reynolds number (τ → ∞) to ensure
long enough signal. Fig. 4A,B shows four typical examples.
When the follower’s frequency f2 is smaller than that of the
leader and the leader frequency is normalized to f1 = 1, the
frequency of the dominant mode is nearly independent of the
follower’s frequency (Fig. 4A): for f2 = 0.6 and f2 = 0.7,
respectively, the dominant mode has frequency fs = 1.15
and fs = 1.18 (the follower frequency f2 is reflected in
the second mode of flow velocity). When the follower’s
frequency f2 is larger than the leader, the first mode only
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reflects the frequency of the follower fs ≈ f2 (Fig. 4B): for
f2 = 1.2 and f2 = 1.4, respectively, the dominant mode has
frequency fs = 1.2 and fs = 1.4.

We set out to probe whether f2/f1 = 1 indeed determines
the boundary between when the dominant Fourier mode fs
of v(x2(t), t) reflects either f1 or f2. We discretized the
frequency space (f1, f2) between ([0.25, 2]× [0.25, 2]) using
a 175×175 grid and at each grid point, we solved the coupled
time-delay system in Eq. (2) for a time interval from [0, 100]
using a timestep dt = 10−3. We evaluated v(x2(t), t) over
the entire time interval and calculated the dominant Fourier
mode. Results are shown as a colormap over the (f1, f2)
space in Fig. 5. We found that the boundary between whether
f1 or f2 are reflected in the dominant mode fs is not f1 = f2
(dashed line in Fig. 5). Instead, it is a line with a smaller
slope (solid line). Below this line, fs is close but not exactly
equal to f1. Above this line, fs is equal to f2 (up to a small
numerical error < 10−8). To understand this transition in
fs at the solid line, we went back to analyze the equation
of motion Eq. (2) in an effort to determine analytically the
dominant frequency.

C. FREQUENCY ANALYSIS

To simplify the equations of motion, we assumed that the
leader is moving at a constant speed U1 equal to its time-
average speed ẋ1(t) = −U1. Substituting into Eq. (2), we
obtained the following decoupled system of equation

mẍ2 =− F2 +D2, D2 = CD(ẋ2)
2

F2 =CT (2πA2f2 cos(2πf2t− ϕ)

− 2πA1f1e
−∆t/τ cos(2πf1(t−∆t)))2

∆t =x2/U1 + t

(4)

We expanded the expression for the force F2, ignored the
high frequency (f1 + f2) term (in simulation, we checked
that ignoring this term does not influence the dynamics of
the problem), and took the limit of τ → ∞:

F2 =C1 + C2 + C1 cos(4πf2t− 2ϕ)

+ C2 cos(4πf1t− 2t− 2x2/U1)

− C3 cos(2π(f1 − f2)t− t− x2/U1 + ϕ),

(5)

where the coefficients C1 = 2π2A2
2f

2
2CT , C2 =

2π2A2
1f

2
1CT , C3 = 4π2A1A2f1f2CT are introduced to

simplify the notation.
We assumed that x2 = B0 + B1t + B2 cos(B3t) at

steady state, where B0, B1, B2, and B3 are unknown
constants representing the follower’s initial location, average
speed, and amplitude, and frequency of oscillation speed.
Substituting into Eq. (5), we get

F2 = C1 + C2 + C1 cos(4πf2t− 2ϕ)

+ C2 cos[(4πf1 − 2− 2B1/U1)t

− 2B0/U1 − 2B2 cos(B3t)/U1]

− C3 cos[(2πf1 − 2πf2 − 1−B1/U1)t

−B0/U1 −B2 cos(B3t)/U1 + ϕ]

(6)

The complexity of this equation comes from the
composite trigonometric functions: the unknown
function x2 is inside the cos function, e.g. the presence
of term cos(B2 cos(B3t)/U1). Fourier expansion of
cos[B2 cos(B3t)] gives JB2(0)− 2JB2(2) cos(2B3t) + h.o.t,
where Jα denotes Bessel functions of the first kind. In this
expansion, using the first two terms is a good estimation of
the nested trigonometric functions. As such, Eq. (6) can be
further simplified to

F2 = C1 + C2 + C1 cos(4πf2t− 2ϕ)

+ C2[J2B2(0)− 2J2B2(2) cos(2B3t)]

cos[(4πf1 − 2− 2B1/U1)t− 2B0/U1]

− C2[2J2B2(1) cos(B3t)− 2J2B2(3) cos(3B3t)]

sin[(4πf1 − 2− 2B1/U1)t− 2B0/U1] cos(2B3t)

− C3[JB2(0)− 2JB2(2) cos(2B3t)]

cos[(2π(f1 − f2)− 1−B1/U1)t−B0/U1 + ϕ]

+ C3[2JB2(1) cos(B3t)− 2JB2(3) cos(3B3t)]

sin[(2π(f1 − f2)− 1−B1/U1)t−B0/U1 + ϕ]

(7)

From the above equation, when f2 >
√
J2B2(0)f1, the

term with frequency 2f1 has the highest amplitude. When
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f2 <
√

J2B2
(0)f1, the term with frequency f1 − f2 −

(1 + B1/U1)/2π has the highest amplitude. The decision
boundary between these two modes is f2 =

√
J2B2(0)f1.

Since B2 has a small value,
√

J2B2
(0) is slightly smaller

than 1, the analysis agrees with the numerical results in
Fig. 5.

We lastly went back to the equation of motion mẍ2 =
−F2 + CD(ẋ2)

2, which is a forced damped system. The
dominant frequency of forcing term F2 determines the fre-
quency of solution x2. When the motion of the follower is
dominated by its own transverse oscillations, the frequency
of x2 is 2f2. When sensing flow velocity, similar to the
first simplified case described in Sec. III-A, the dominant
frequency of the signal is f2 given that the amplitude of
both swimmers is the same. On the other hand, when the
interaction term dominates the motion of the follower, the
frequency of the follower’s motion (f1 − f2) and the spatial
pattern of the wake add up. Thus, the dominant frequency is
f1 + constant.

IV. SLIDING MODE CONTROLLER DESIGN

Our goal is to design a controller that stabilizes two
uncoordinated swimmers in a cohesive school formation. Via
the analysis in Sec.III, we found that the follower can extract
information about the frequency of the leader f1 based on
only local flow sensing, but our sensing algorithm does not
provide an accuracy measurement of f1. Through analyzing
the passive pairs in Sec. II, we know that a subtle mismatch
in frequency leads to unstable formations. Thus, instead of
sensing once and matching frequency, we applied a controller
that involves periodic sensing and adjusting frequency.

From Sec. III, both flow velocity at the position of
the follower and the follower’s swimming velocity contain
information about the leader’s frequency. However, when
sensing its own swimming velocity, 2f2 and f1−f2+constant
creates ambiguity. Thus, we used flow velocity as the sensory
cue, and designed a sliding mode controller as follows,

f2 =

{
f2 − c1, |f2 − fs| ≤ c3
fs − c2, |f2 − fs| > c3

, (8)

where c1, c2, c3 are constants. This controller can be under-
stood intuitively as follows. When the sensed frequency fs is
close to the follower’s own frequency (the difference is less
than a threshold c3), it means that f2 > f1, thus we need
to decrease f2. However, since we don’t know the value of
f1, we apply the controller to decrease f2 by a small step
until fs is not close to f2. When this happens, it means that
fs is f1 plus a constant. Thus, the controller switches f2
to fs minus a constant c2. In this study, these constants are
chosen as c1 = 0.03, c2 = 0.2, c3 = 0.1. Since we need
to apply a Fourier series expansion to the signal, we apply
the controller intermittently. We chose the time interval to
be 5/f1.

This controller guides the follower to form a stable limit
cycle with the leader. Fig. 6A shows the time evolution of the
scaled distance with different initial conditions. Simulations
show that limit cycles exist in multiple spatial locations,

which is different from the passive limit cycle, which is
a global attractor. This implies that larger inline schools
can be constructed based on this frequency controller, where
different uncoordinated swimmers stay at different distances.
We plotted the scaled distance over frequency ratio f2/f1 in
Fig. 6B for one of these trajectories, in which black dots
show when the controller is applied.
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V. CONCLUSIONS
We developed a frequency controller to achieve stable

formation for uncoordinated swimmers based on local flow
sensing. The follower adjusts its frequency to match the
frequency of the leader. However, because the sensed fre-
quency fs does not accurately represent the frequency of
the leader, the follower needs to apply sensing and control
periodically and form a limit cycle instead of staying at a
stable equilibrium point. This work suggests that when a
subset of fish in a school decide to accelerate or decelerate
their motion via modulating their tailbeat frequency, other
fish in the school can ”feel” the change with only local
flow sensing. Although we only studied this controller in
a school of two swimmers, it can be applied to larger
inline schools. This information propagation can be equally
applied to robotic fish swarms, in which telecommunication
is limited in underwater environments.

The analysis presented in this paper is relevant to problems
that share similar features. The challenge of the problem in
question comes from two aspects. Initially, the issue arises
from the time delay, which intertwines the equations of
motion for both swimmers. In this research, we analytically
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determined the leader’s average swim speed while disre-
garding its oscillatory behavior. This approach, a first-order
approximation, effectively addresses the time delay, allowing
for the separation of the follower’s motion. The second
challenge involves the nesting of trigonometric functions.
Our findings suggest that using the first and second terms
of their Fourier series provides a reliable approximation.

In future work, we will consider finite decaying time scale
τ , which models the strength of viscous effect physically.
Future work would also involve testing and developing this
sensory control strategy in numerical and robotic setups.
An especially attractive direction is to combine this con-
troller with versatile behavior models. The robustness of
the proposed controller needs to be examined under models
with different fidelity, like pitching/heaving airfoil, 2d fish
and 3d fish [25], [26], [6]. Moreover, the combination of
machine learning models and this physics-based model can
be explored [27]. Also, this frequency controller, combined
with amplitude and phase controller, would achieve fully
autonomous control in schooling fish [19].
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