HAOTIAN HANG

April, 2024

Contact Information

Mobile: (213)462-5919E-mail: haotianh@usc.edu, hanghaotian@gmail.com Social media: \bigcirc in \mathbb{R}^6 \Im Address: 920 Downey way, Los Angeles, CA 90089 **☆:** Personal Website

Education

2020 -		University of Southern California , Los Angeles, CA Ph.D. Candidate, Mechanical Engineering, (2022/8 passed qualifying exam, 2024 winter anticipated)	
	2015 - 2019	Shanghai Jiao Tong University, Shanghai, China B.S. Aeronautics and Astronautics Engineering, June 2019 (Average Score: 89.22/100)	
Em	ployment		
	2020 - 2023/6 - 8	Research Assistant, Bio-Inspired Motion Lab at USC, PI: <i>Prof. Eva Kanso</i> Quantitative Analyst Intern, Corporate Model Risk, Wells Fargo, Manager: <i>Dr. Nengfeng Zhou</i> Evaluate robustness of machine learning models Discover the contribution of each feature on robustness metrics and overfitting Compare different perturbation schemes in robustness testing	
	2019/9 - 12	Develop nonlinear variance inflation factor (VIF) to evaluate the nonlinear correlation in dataset Intern Algorithmic Engineer , Shanghai Hongpu Information Technology Co., Ltd. Conduct flaw detection on images of photovoltaic cell using Faster R-CNN and yolov3 Research Assignment , I.C.Wu Center for Aerodynamics, PL, Prof. Hong. Line	
D	2010 - 2019	Research Assistant, J.C. wu Center for Aerodynamics, F1. F70J. Hong Lau	
Pu	blications		
	2024	 Jiao, Y., Hang, H., Merel, J., & Kanso, E. (in preparation). Sensing flow gradients is necessary for learning autonomous underwater navigation Hang, H., Jiao, Y., Heydari, S., Ling, F., Merel, J. & Kanso, E. (submitted). Interpretable and 	ļ
		generalizable strategies for stably following hydrodynamic trails 6. Heydari, S., Hang, H. , & Kanso, E. (under review at ELife). Mapping spatial patterns to energetic	
		 5. Hang, H., Heydari, S. & Kanso, E. Feedback control of uncoordinated flapping swimmers to maintain school cohesion. American Control Conference (ACC) 2024 	
	2023	 Qin, S., Hang, H., Xiang, Y. & Liu, H. (2023). Reynolds-number scaling analysis on lift generation of a flapping and passive rotating wing with an inhomogeneous mass distribution. Chinese Journal of Aeronautics, 37(2), 259-269 	
	2022	3. Hang, H., Heydari, S., Costello, J., & Kanso, E. (2022). Active tail flexion in concert with passive hydrodynamic forces improves swimming speed and efficiency. Journal of Fluid Mechanics, 932, A35.	
	2021	 Xiang, Y., Hang, H., Qin, S., & Liu, H. (2021). Scaling analysis of the circulation growth of leading-edge vortex in flapping flight. Acta Mech. Sin, 37(10), 1530-1543. 	
	2020	 Hang, H., Yu, B., Xiang, Y., Zhang, B., & Liu, H. (2020). An objective-adaptive refinement criterion based on modified ridge extraction method for finite-time Lyapunov exponent (FTLE) calculation. Journal of Visualization, 23(1), 81-95. 	

Talks/Presentations

2024	APS March Meeting , Learning to track flows
2023	APS Division of Fluid Dynamics Meeting, Flow-coupled swimmers self-organize into energetically
	cooperative or greedy spatial patterns
	So Cal Fluids XVI, Active tail flexion in concert with passive hydrodynamic forces improves swimming
	speed and efficiency
2022	APS Division of Fluid Dynamics Meeting , Learning to blindly follow hydrodynamic trails
	So Cal Fluids XV, Learning to blindly follow hydrodynamic trails
2021	APS Division of Fluid Dynamics Meeting , Active tail flexion in concert with passive hydrodynamic
	forces improves swimming speed and efficiency
2020	APS Division of Fluid Dynamics Meeting , Flowtaxis in the wakes of oscillating airfoils
2018	APS Division of Fluid Dynamics Meeting, Passive rotation of a flapping wing with an inhomoge-
	neous mass distribution

2023 -	Collective locomotion in complex geometry , supervised by <i>Prof. Eva Kanso</i> , <i>Prof. Alex Barnett</i> Employ Boundary Element method (BEM) to model the hydrodynamic interaction between fish school		
	and arbitrary geometry		
2021	Study the transition of fish school in a bi-chamber domain School cohosion and energetic honofits of fish school supervised by Prof. Fug. Kange. Prof. Matt.		
2021 -	McHenry		
	Develop efficient parallelized code using fast multipole method (FMM) to simulate emergent formation		
	of fish schools composed of up to 10 fishes		
	Evaluate the energetic benefit and stability of fish schools of different different spatial patterns Design control laws to stabilize fich schools that are passively unstable		
	Study the dynamically-changing real fish schools using graph neural network		
2020 -	Tracking hydrodynamic trails using deep reinforcement learning, supervised by Prof. Eva Kanso, Dr. Josh Merel		
	Employ reinforcement learning to follow vortical wakes based on local flow sensory		
	Find the importance of the wake's periodicity and traveling wave characteristic in source seeking		
	Analyze the controller in a simplified signal field and prove that stability of the controller depends on the location of sensor		
	Compare performance among different sensory cues, especially between mechano- and chemo- sensing		
2020 -	Flexion in fish swimming , supervised by <i>Prof. Eva Kanso</i> , <i>Prof. John H. Costello</i> Analyze the role of active and passive flexion on swimming speed and efficiency of a self-propelling pitching plate using vortex sheet method		
	Parametric study on effects of flexion phase, flexion angle and flexion ratio on swimming performance Find overlap between biological data and the region we proposed to have hydrodynamic benefits in parameter space		
2016 - 2019	High lift generation mechanisms of insects' flight, supervised by Prof. Hong Liu, Prof. Yang		
	Xiang and Dr. Suyang Qin		
	Conduct experimental study using robotic flapping wing models in glycerin with Reynolds number		
	Measure flow field using particle image velocimetry (PIV) and measure force and torque using 6-axis		
	force sensor, analogue filter and NI data acquisition system		
	can generate a lager LEV because of wake capture		
	Find a scaling law between passive rotation and active translation in flapping wing model		
2016 - 2019	AMR for FTLE calculation, supervised by Prof. Hong Liu, Prof. Bin Zhang, Bin Yu and Prof. Yang		
	Xiang		
	Develop a physics-based adaptive refinement method for finite-time Lyapunov exponent calculation		
2015 - 2016	VTOL pitch-changed quadrotor , supported by National Students' Platform for Innovation and Entrepreneurship Training, supervised by <i>Prof. Junqi Wu</i>		
	Lead a team to make a quadrotor and implement pitch-changed technique and VTOL technique in terms of both mechanical and control		
Teaching Expen	ience		
	at University of Southern California		
2021 Spring	Teaching Assistant , AME-526, Introduction to mathematical methods in engineering II, <i>Prof. Niema Pahlevan</i>		
2020 Fall	Teaching Assistant , AME-404, Computational Solutions to Engineering Problems, <i>Prof. Takahiro Sakai</i>		
Open Source Projects			

2023- Field-Oriented Control (FOC) on STM32 O Github Link 2021- Inferring unknown parameters of partially-observable system using Physics-informed-DeepONet O Github Link 2021 - 2022 Parallel C++ Implementation of Proximal Policy Optimization (PPO) O Github Link

Student Mentees

	at University of Southern California
2023 -	Ziyan Zhu, M.S. student
	Ali Khokhar , M.S. student
2023	Donghun (Calvin) Moon, undergraduate at Columbia University
Service	
2024	Judge, Undergraduate Symposium for Scholarly and Creative Work Session Chair, APS March Meeting DFD IX session
2023	Reviewer, American Control Conference (ACC) 2024
	Judge, Undergraduate Symposium for Scholarly and Creative Work
2022	AME 441 project mentor, Robotic fish with artificial lateral line
	Judge, Undergraduate Symposium for Scholarly and Creative Work
Honor/Awards	
2022	USC Three Minute Thesis (3MT) competition Finalist Link
2020	USC Viterbi felloship
2017-2018	Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment of SJTU
2016	Honeywell Star Project
	Second Place , Parts of the National College Students Physics Competition
	Third Place , Chinese College Students' Mathematics Competition
2014	First Place, Chinese Chemistry Olympiad
	First Place, Shanghai Adolescents Science and Technology Innovation Contest

Professional Society Memberships

• American Physical Society (APS)

• Institute of Electrical and Electronics Engineers (IEEE)

Graduate Coursework

	at University of Southern California	
2024	AME-530b, Dynamics of Incompressible Fluids, Prof. Mitul Luhar	
2023	CSCI-575, Quantum Computing and Quantum Cryptography, Prof. Ming-Deh Huang	
	CSCI-599, An Introduction to Programming Languages, Prof. Mukund Raghothaman	
2022	EE-587, Nonlinear Control Systems, Prof. Mihailo Jovanovic	
	CSCI-561, Foundations of Artificial Intelligence, Prof. Wei-Min Shen	
	CSCI-567, Machine Learning, Prof. Victor Adamchik	
	CSCI-653, High Performance Computing and Simulations, Prof. Aiichiro Nakano	
2021	PHYS-516, Methods of Computational Physics, Prof. Aiichiro Nakano	
	EE-556, Stochastic Systems and Reinforcement Learning, Prof. Rahul Jain	
	CSCI-570, Analysis of Algorithms, Prof. Victor Adamchik	
	AME-508, Machine Learning and Computational Physics, Prof. Assad Oberai	
	CSCI-596, Scientific Computing and Visualization, Prof. Aiichiro Nakano	
2020	AME-525, Engineering Analysis, Prof. Eva Kanso	
	AME-526, Introduction to Mathematical Methods in Engineering II, Prof. Niema Pahlevan	
	AME-511, Compressible Gas Dynamics, Prof. Iván Bermejo-Moreno	
	PHYS-760, Selected Topics in Computational Physics, Prof. Satish Kumar Thittamaranahalli	
	AME-451, Linear Control Systems I, Prof. Henryk Flashner	
	AME-541, Linear Control Systems II, Prof. Néstor O. Pérez-Arancibia	
	AME-535A, Introduction to Computational Fluid Mechanics, Prof. Alejandra Uranga	
	AME-530A, Dynamics of Incompressible Fluids, Prof. Carlos Pantano	

Online Coursework

2024	Minds and Machines, MITx Online
2022	C++ Nanodegree, Udacity
	Qiskit Global Summer School 2022, IBM
2021	Build a Modern Computer from First Principles: From Nand to Tetris (Project-Centered Course),
	Coursera
2019	Specialization, DeepLearning.AI TensorFlow Developer, Coursera (containing 4 courses)
	Specialization , Deep Learning, Coursera (containing 5 courses)

Machine Learning, Coursera General Chemistry, Coursera

Technical Skills

Programming Language:	Python, C/C++, Matlab, Fortran
Machine learning framework:	Pytorch, Tensorflow
Micro controller:	Arduino, Raspberry Pi, Pixhawk, stm32
Other softwares/ tools:	Solidworks, Fusion 360, ROS/ROS2, Gazebo, github, LATEX, Docker, Ansys Fluent, Linux, MPI, OpenMP, cuda